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Quantum Computing in Academia

* ML: (classification, kernels, GAN etc..) [1]

* Networking (routing, task offloading, user association, channel assignment) [2]
* Biological sequence comparison algorithm [3]

* Chemistry and material science [4]

* Cybersecurity [5]

* Finance (optimization, stochastic modelling, ML) [6]

* Finding flows of a Navier-Stokes fluid through quantum computing [7]

e Overview: How can Al, LLMs and quantum science empower each other? [8]

[1] https://arxiv.org/abs/2304.09224 [2] https://arxiv.org/abs/2406.02240

[3] https://www.nature.com/articles/s41598-023-41086-5 [4] https://pubs.acs.org/doi/10.1021/acs.jctc.3c01043
[5] https://arxiv.org/abs/quant-ph/9508027 [6] https://arxiv.org/abs/2307.11230

[7] https://www.nature.com/articles/s41534-020-00291-0

[8] https://www.oezratty.net/wordpress/2024/ai-and-quantum-empower-each-other/
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Introduction to Quantum Computing

Bit: Either O or 1

Qubit: «a|0)+ B|1) @ BEC
a’+ %=1 :

Deutsch-Jozsa: a|0) + B|1) ——

f(x)

f(x) is constant or balanced?

Entanglement is a form of correlation between qubits.

* Without entanglement: 2N possibilities of

guantum state, where N is the number of qubits

 With full entanglement 2% possibilities

1. Instead of fixed zero/one state
qubit has infinite many (we can
efficiently encode data using one
qubit).

2. Superposition of qubit states might
utilize interference to compute the
output of the circuit.

3. Entanglement provides us with exponential
growth in possible quantum states.

Example: Quantum Shor's algorithm for prime
number factorization demonstrates exponential
speedup compared to classical methods.




Evolution Stages of Universal Quantum Computers

Noisy Intermediate Scale Quantum Early Fault-tolerant Quantum Computing  Fault-tolerant Quantum Computing

(NISQ) computing (EFTQC) (FTQC)
—
Defined by John Preskill in 2018 [1] Used by Earl Campbell in 2021, Bright future

Reasonable amount of qubits (50- described tradeoff in 2023 [2]

100s) to solve some practical tasks, but We must decide on a tradeoff between Require large amount of physical

with relatively high noise level, limiting circuit size and fault tolerance. qubits to convert them to

its capabilities (in size and depth). “noiseless” logical qubits using
“NISQ devices are too large to be Quantum Error Correcting Codes

simulated classically, but also too small (QECCQ).

to implement quantum  error

correction”.

[1] - Quantum Computing in the NISQ era and beyond https://arxiv.org/abs/1801.00862

[2] - Early Fault-Tolerant Quantum Computing https://arxiv.org/abs/2311.14814

[3] - Overview comparison https://www.icvtank.com/newsinfo/886446.html?templateld=287088
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Source: https://arpa-e.energy.gov/sites/default/files/11 coffrin-updated-gc-hardware-overview-talk-2024-0503.pdf
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Quantum Computing Algorithms

Optimization, Lowest energy state, QML [1]

(Might be applicable nowadays and generally

do not require deep understanding of Quantum physics.

Quantum speedup is not proved):

Quantum algorithms to solve Quadratic Binary
Unconstrained Optimization (QUBO) problems
Quantum Approximate Optimization
Algorithm (QAOA)
Variational Quantum Eigensolver (VQE)
Variational Quantum Algorithms (VQA)

* Quantum-assisted NNs
Anzatz-bazed (Kernels for SVM, etc..)

Fundamental algorithms [2]

(Require a lot of logical qubits

and a good understanding

Of Quantum physics. Has theoretical
proof of quantum speedup):

* Quantum Fourier Transform (QFT)
e Shor’s

* Deutsch-Jozsa

* Grover

 HHL

[1] — A comprehensive review of Quantum Machine Learning: from NISQ to Fault Tolerance https://arxiv.org/abs/2401.11351

[2] — Fundamental algorithms https://quantumalgorithmzoo.org/
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Types of Quantum Computers
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Gate-based computations Adiabatic quantum computing
(“digital” guantum computing) (“analog” quantum computing) [2]
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e Perform universal computations.  Quantum annealing — find the lowest energy of the system
* Accommodate majority of quantum algorithms. (useful in optimization and system simulations).
* Hardware agnostic (almost). * Quantum simulator — models the system under investigation.

[1] - Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation https://arxiv.org/abs/quant-ph/0405098
[2] - Adiabatic Quantum Computing https://arxiv.org/abs/1611.04471
[3] - Images https://www.ibm.com/quantum/blog/ & DOI:10.1101/2023.10.19.563028
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Quantum Computing Algorithms
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Most Important Characteristics of a Quantum
Computer

* Number of qubits G |0)—H 9 l\
* Connectivity 7 10) o—e
i G2 |0) D
* Coherence time and
gate execution time a3 |0) D—eo—e
* Fidelity (Reliability) G4 |0) D
of gates, measurements ¢s |0) N /L
etc... g% |0) 2



Quantum Computing Platform Comparison
IS e I
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95%
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Source: https://www.oezratty.net/wordpress/2023/understanding-guantum-technologies-2023/
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Types of Quantum Computers

COMPANY QUBIT COUNTS
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Source: https://arpa-e.energy.gov/sites/default/files/11 coffrin-updated-gc-hardware-overview-talk-2024-0503.pdf
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Quantum Computing Companies
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Source: Understanding Quantum Technologies 2023 https://arxiv.org/abs/2111.15352
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Quantum Programming Stack

Algorithm depending on application

A 4

Quantum source code

A 4

Transpiler
Input Circuit Rewriting Steps Output Circuit Notes:
9:0) {HF—9{H}— f‘ = . .
e Hf : ek t #—— [1] = Currently we can physically implement
et i f o 10 " general 1 and 2-qubit gates. 3-qubit gates, can
0 6‘(’ \oq} ,@e N be implemented, but some specific,
& @Q G e such as Toffoli.
R & {9\0 ,@b F OQ\\ ..
S & & & e & [2] — Remember about connectivity.
@ & 9 (2 x> S . .
S (@*‘ %03 &«\‘9\% dg"\ [3] — Any gate might be decomposed into
S Q () . A 5N . . . .
I N %0&“\ o combination of 1 and 2 qubit basis gates.
Hardware

Source: https://docs.qguantum.ibm.com/api/qiskit/1.0/transpiler
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Quantum Programming Stack
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Figure 12: classification of quantum software engineering tools. (cc) Olivier Ezratty, 2023.

Source: Understanding Quantum Technologies 2023 https://arxiv.org/abs/2111.15352
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Quantum Programming Languages
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Quantum vs Classical Computers in Practice

CompIeX|ty There is still a lack of reliable quantum

* For high complexity, we need to memory, and there are no large-scale
remember that modern GPUs implementations.
have billions of transistors. To * Quantum memory has very limited
compete effectively with them, throughput compared to classical computers.
quantum computing would e Quantum mechanics adheres to the no-
require exponential speedup cloning theorem, which restricts the
capabilities. replication of quantum states.

* For the low complexity tasks, * A qubit has a limited lifetime, which should
classical computers remain more be considered.

suitable. Memory

e Operating a qubit is far more complicated than
switching a transistor and is therefore orders
of magnitude slower. Thus classical computers
are more suitable for small tasks.

Execution time

[1] Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage https://arxiv.org/abs/2307.00523
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Conclusion

* In academia, ongoing research in guantum computing demonstrates
its potential advantages across various fields.

* Currently, we are in a transitional phase from NISQ (Noisy
Intermediate-Scale Quantum) to FTQC (Fault-Tolerant Quantum
Computing).

* Algorithms are rapidly evolving, although many are still far from
practical application.

* From a practical standpoint, quantum computing is best suited to
efficiently solve problems with low memory requirements and in case
of exponential speedups in complexity, particularly in fields such as
chemical and biological simulations.



How to start?

* Long way: Find a suitable book for Quantum computing (Any modern
one would be good)

* Short way: go to https://pennylane.ai/gml/ or
https://learning.guantum.ibm.com/catalog/courses (You can find
more on github). And you can use other sources!

e For detailed info: https://arxiv.org/abs/2111.15352

* Short overview:
https://www.oezratty.net/wordpress/2023/understanding-quantum-
technologies-2023/
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